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Abstract. For male songbirds, song rate varies throughout the breeding season and is correlated with
breeding cycle stages. Although these patterns have been well documented, this relationship has not been
used to predict a bird’s breeding status from acoustic monitoring. This challenge of using a response (i.e.,
behavior) to indirectly measure an underlying biological state is common in ecology, but correctly address-
ing the associated statistical challenge of calibration is rare. The objective of this study was to determine
whether variation in song rate can be used to predict the breeding status of the Olive-sided Flycatcher
(Contopus cooperi). In 2016, song rates from 28 male Olive-sided Flycatchers were collected from human
observers (n = 545 five-minute counts) and breeding status (i.e., single, paired, and feeding young) was
monitored throughout the breeding season. The predictive ability of three modeling approaches—regres-
sion, hierarchical, and a classification tree—was evaluated using sensitivity and specificity to determine
the best modeling approach. The hierarchical model was the best at predicting all three breeding status
classes, with a mean sensitivity of 69%, compared with 54% and 50% from the regression and machine
learning models, respectively. Our results suggest that song rate can be used as an indirect measurement of
breeding status in the Olive-sided Flycatcher when using a hierarchical modeling approach to calibrate the
breeding status–song rate relationship. This novel modeling approach provides a cost-effective tool to
collect much needed demographic information over large spatial extents and inform species status assess-
ments, recovery strategies, and management plans for species of conservation concern.
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INTRODUCTION

Ecologists often desire information on the state
of an organism or environment that can be chal-
lenging to measure directly. Because of this,
many state variables require indirect measure-
ments (Stephens et al. 2015). For example, leaf
area index, an important metric of forest func-
tion, is often measured indirectly through record-
ing light absorption patterns because of the high

cost of directly measuring leaf dimensions (Oli-
vas et al. 2013). Other examples include using
indicator species to track changes in the state of
the environment (Lindenmayer and Likens 2011)
or satellite tracking data as an indirect measure
of wildlife feeding behavior (Robinson et al.
2007). Although the use of indirect metrics is
common in ecology (Stephens et al. 2015), the
statistical methods used to infer the relationship
between the state variable of interest and the
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indirect proxy are often oversimplified. For sim-
plicity, it may be tempting to ignore causal
dependencies when analyzing these relation-
ships. However, this might result in incorrect
conclusions or low predictive accuracy due to
the error distributions implied by standard statis-
tical models (e.g., regression models). Statistical
calibration aims to estimate an independent vari-
able (the cause) from a dependent variable (the
effect; Osborne 1991). Despite acknowledgment
of the importance of calibration in some fields
(e.g., water quality health; ter Braak and
Barendregt 1986, Hall and Smol 1992; and pale-
oecology, ter Braak 1995), relatively few ecologi-
cal studies have used such approaches for
creating effective indirect measurement
techniques (Biondi and Waikul 2004).

In avian ecology, calibration models describing
the relationship between a male songbird’s
breeding status and his behavior (cause and
effect, respectively) may provide a novel way to
monitor male breeding status indirectly. This
information is required to inform sound conser-
vation planning (Anders and Marshall 2005), but
direct measurements of pairing success, nest suc-
cess, and fledging rates for songbirds are expen-
sive and logistically challenging to obtain
(Martin et al. 1997). Thus, empirical data on
breeding status are only available for a few spe-
cies and over relatively small spatial extents
(Holmes et al. 1992, Christoferson and Morrison
2001, Dussourd and Ritchison 2003, Hach�e et al.
2013). Indirect measures of breeding status, such
as observing non-agonistic behavior toward con-
specifics to confirm pairing status and observing
adult birds carrying food to confirm the presence
of young, have been suggested as an approach to
decrease time and effort to estimate metrics such
as fledging success (Vickery et al. 1992, Hunt
et al. 2017). However, such methods are still
time-consuming for many species occurring at
low abundance and with large breeding territo-
ries and have not yet been rigorously calibrated.

We propose a simpler indirect measure of a
songbird’s breeding status: inferring breeding
status from singing behavior. Songs in passerines
are primarily used by a male to attract females
and to defend a territory against conspecifics
(Thorpe 1961, Armstrong 1973). For many spe-
cies, males tend to sing at high rates when they
are unpaired, with declines in singing rate as

their breeding status changes (i.e., unpaired to
paired, mated to nest building, egg laying to
incubating, incubating to feeding nestlings, etc.;
Gibbs and Wenny 1993, Dussourd and Ritchison
2003, Liu et al. 2007). We refer to this pattern as
the breeding status–song rate relationship or the
“BSSR” relationship. While several studies have
described the BSSR relationship, none have
attempted to use song rate to predict breeding
status (although Staicer et al. 2006, suggested the
possibility). We explored three different calibra-
tion model types to assess the use of song rate to
predict breeding status (single, paired, and feed-
ing young) of the Olive-sided Flycatcher (Conto-
pus cooperi; OSFL). Specifically, our objective was
to test predictive ability of these three BSSR cali-
bration models. We used OSFL song rate data
from a study conducted in the Northwest Territo-
ries and northern Alberta, Canada. This species
is designated as Threatened under Canada’s Spe-
cies at Risk Act (SARA 1994) and has experi-
enced an overall population decline of 70%
between 1970 and 2015 (Environment and Cli-
mate Change Canada 2017). Therefore, finding a
cost-effective way to monitor breeding success is
a priority in recovery planning (Environment
and Climate Change Canada 2017).
Previous work has suggested that song rates

and detection probabilities for the OSFL are
influenced by breeding status, time of day, and
day of year (Wright 1997). Time of day is an
important predictor for singing activity in song-
birds, as males sing the most around sunrise and
song production declines throughout the day
(Stacier et al. 1996). Date is also an important
variable for predicting breeding status, because
migratory birds will be single upon first arriving
at the breeding ground, then will be more likely
to be paired or have active nests as the days
advance. Furthermore, latitude may affect breed-
ing timing because more northern breeding sites
will have later arrival times. We therefore tested
the importance of each of these predictors in the
BSSR models.
First, we performed a multinomial logistic

regression of breeding status against song rate
and temporal covariates. Arguably the simplest
model we considered, this model conflates the
causal relationship assumed between breeding
status and song rate, and the causal mechanisms
behind the temporal predictors. Secondly, we
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used a hierarchical model, defined as a sequence
of probability models arranged to describe con-
ditionally dependent random variables (K�ery
and Royle 2016). This modeling approach is use-
ful for complex ecological modeling because of
its ability to account for multiple sources of
uncertainty (Cressie et al. 2009). In the case of
BSSR calibration, a hierarchical model can be
used to deconstruct the cause-and-effect relation-
ships into one component that accounts for tem-
poral variation in breeding status probabilities
throughout the breeding season and a second
component that models how breeding status and
time of day affect song rate. Our third approach
was to use a classification and regression tree
(CART) model (Brieman et al. 1984), to predict
breeding status from song rate, time of day, date,
and latitude. Classification and regression tree is
a machine learning approach, which has been
recommended as a powerful method for model-
ing complex ecological data because of its ability
to deal with nonlinear relationships and high-
order interactions (De’Ath and Fabricius 2000).
Classification and regression tree models are
comprised of a series of binary splits, based on
predictor variable values, to partition data into
smaller groups and increase the proportion of
any one class (i.e., categorical value) in each
group (Kuhn and Johnson 2016).

Our objective was to determine the best mod-
eling framework to accurately predict a song-
bird’s breeding status. We measured the relative
success of the three models by comparing predic-
tion sensitivity and specificity for the three
breeding status classes using K-fold cross-valida-
tion (Arlot and Celisse 2010). We conclude by
discussing the strengths and weaknesses of the
top-performing model and how this model may
be further developed for use with autonomously
recorded acoustic data.

METHODS

Study species
The OSFL is a neotropical migratory songbird

that typically breeds in lowland coniferous for-
ests of the Canadian boreal and montane conifer-
ous or coastal regions of the Pacific Coast of
Canada and the United States (Altman and Salla-
banks 2012). In boreal regions, this aerial insecti-
vore defends territories in conifer stands,

recently burned forest, and shrubby patches
(Hach�e et al. 2014). This species is often associ-
ated with edge habitat, such as forest edges
beside wetlands or riparian areas, and man-
made clearings (Altman and Sallabanks 2012).
Olive-sided Flycatchers are generally monoga-
mous birds that defend large territories (up to
40–45 ha; Altman and Sallabanks 2012). Extra-
pair copulation rates are expected to be very low
(Altman and Sallabanks 2012), as evidence of
potential polygyny has only ever been recorded
once (B. Altman, unpublished manuscript), and ter-
ritories are large and typically located at least
>100 m apart (Robertson et al. 2009). Adults usu-
ally build an open-cup nest in branches near the
top of tall live or dead conifer trees, lay 3–4 eggs,
and only lay one clutch per year (Altman and
Sallabanks 2012). In northern latitudes (i.e.,
Alaska and central Alberta), spring arrival dates
are mid- to late May (Salt and Salt 1976, Kessel
and Gibson 1978, Wright 1997), and in Alaska,
clutches initiate late May to mid-June with fledg-
ing in mid-July (Wright 1997).
Olive-sided Flycatchers sing a single song

type, described as a loud, clear whistle or the
mnemonic “quick, three-beers!” (Peterson 1980;
Fig. 1). Although some variation exists among
individuals (Robertson et al. 2009), and OSFLs
may produce other call types for purposes such
as alarming or courtship (i.e., “pips,” “churrs,”
and “purrs”; Wright 1997), in this study we
define a single song as the full, three-syllable
“quick, three-beers.”
A detailed study of OSFL singing behavior in

Alaska revealed seasonal and daily patterns

Fig. 1. Spectrogram of an Olive-sided Flycatcher
song, with frequency in kilohertz (kHz) and time in
seconds (s).
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(Wright 1997). Seasonally, males sang regularly
until they attracted a female, after which singing
decreased dramatically until incubation. After
hatching, males sang at an extremely low rate;
however, males that remained unpaired sang
regularly throughout the season. On a daily
scale, males sang at very high rates of >8 songs/
min early in the morning decreasing to 2 songs/
min by mid-morning and between 1 and
2 songs/min from late morning to afternoon.

Study area
The study took place in northern Alberta and

the Northwest Territories, Canada (Fig. 2)
between 30 May and 22 July 2016. The sampling
locations in Alberta were ~80 km north of Fort
McMurray, in the Mid-Boreal Mixedwood Ecore-
gion (Strong and Leggat 1992) in stands com-
prised of upland jack pine (Pinus banksiana)
forest, bog, and fen wetlands (dominated by
black spruce, Picea mariana and tamarack, Larix
laricina). Dominant understory shrubs included
rose (Rosa acicularis), alder (Alus spp.), and aspen
(Populus tremuloides) in upland sites and blue-
berry (Vaccinium myrtilloides), Labrador tea
(Ledum groenlandicum), dwarf/bog birch (Betula
spp.), and willow (Salix spp.) in lowland sites.
The Northwest Territories study area ranged
from ~30 km south of Fort Providence to
Behchok�o, with site access off Highway 3
(Fig. 2). This study area lies within the Great
Slave Lowland Mid-Boreal Ecoregion (Ecosystem
Classification Group 2007), which is dominated
by wetlands (bogs and fens) and scattered
patches of upland mixed-wood and jack pine for-
ests. Some sampling locations were in stands that
had burned in 2014 and 2015. Shrub species com-
position was similar to Alberta.

Sampling design
Sampling locations and time of sampling were

selected based on known occurrence and behav-
ioral observations of territorial male OSFLs dur-
ing the previous two breeding seasons (Pardieck
et al. 2016, Pankratz et al. 2017; E. Bayne, unpub-
lished data; M. Knaggs, unpublished data). The spa-
tial extent of our study area was selected to
represent southern (latitude 57°) and northern
locations (latitude 62°) to account for variation in
daily activity levels. Between the last week of
May and the first week of June 2016, potential

sampling locations were monitored using call
playback surveys to confirm arrival and settle-
ment of OSFLs. Call playback surveys consisted
of 5 min of listening, followed by 30 s of play-
back, 2 min of listening, 30 s of playback, and a
final 5 min of listening. If call playback surveys
were conducted at a location on three separate
days before 8 June 2016, and no OSFL was
detected, or only once prior to the last visit, a
location was deemed to not overlap a territory.
Alternatively, if an OSFL was detected twice or
more, the potential territory was considered
occupied and included in our sampling locations.
While monitoring potential territories, we
detected additional males in other nearby loca-
tions (n = 5) and these locations were added to
the sampling design. This resulted in 19 sam-
pling locations in the Northwest Territories and 9
in Alberta.
For each territory, we conducted repeated vis-

its approximately once per week, resulting in
between 1 and 10 visits per bird (6 � 2.43;
mean � standard deviation [SD]). During each
visit, we assessed breeding status (i.e., single,
paired [including being paired with no known
nest, nest building, or incubating], or feeding
young; Table 1). When breeding status could not
be confirmed in the field, the status was back-cal-
culated based on average breeding timing for the
species (15 d for incubation and 19 d with nest-
lings; Wright 1997) using breeding status infor-
mation from previous and subsequent visits.
Dates when status could not be back-calculated
with confidence (i.e., there were not enough
dates with field-confirmed breeding status) were
excluded from the analysis. A visit lasted 1 h and
was conducted between sunrise and the first 6 h
after sunrise. During each visit, we also mea-
sured song rate, defined as the mean singing rate
based off four 5-min song counts. At time 0, 15,
30, and 45 min from the start of the visit, the
number of songs produced by the OSFL was
counted in a 5-min period. Song counts were
only conducted when observers were close
enough to see the male and were canceled if he
flew away during the count period. Song count
data were recorded until 30 June and 8 July, in
Alberta and the Northwest Territories, respec-
tively. In both study areas, territories were revis-
ited once or twice between 8 and 22 July to
confirm nest contents if not yet confirmed. Nests
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were located for 12 of the 28 males monitored in
this study. For these males, nest contents were
confirmed using a telescopic PVC pole (maxi-
mum height 17 m) with a video camera, which
provided a live feed to a handheld monitor on
the ground (The Peeper Cam, http://www.ibwo.
org/camera.php, David Luneau, Arkansas, USA).

Methods of calibration
For the three model types, that is, multinomial

logistic regression, hierarchical model, and classi-
fication tree, model selection was conducted on a
set of candidate models allowing for identifica-
tion of meaningful predictor variables. Song rate,
time, ordinal date, and latitude were considered

Fig. 2. Locations (red dots) where Olive-sided Flycatcher territories were monitored in 2016 in the Northwest
Territories (n = 19) and northern Alberta (n = 9), Canada.
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as candidate predictors for each model type.
Song rate was the average 5-min song count
collected within one sampling hour (n = 4) dur-
ing a visit. Time was calculated by subtracting
time of sunrise from the mean time of the song
counts. Both date and time were mean-centered
and scaled by their SD. Latitude was a binary
categorical variable, representing either the
northern (Northwest Territories) or southern
(Alberta) sites.

All models were built using the R statistical
programming language (R Core Team 2017).

Multinomial logistic regression.—Multinomial
logistic regression models were built using the
multinom function in R package nnet (Venables
and Ripley 2002, Ripley and Venables 2016). We
compared six a priori models (Appendix S1:
Table S1), ranging from the simplest models with
a single predictor to the full model that included
song rate, date, time as an interaction with song
rate, and latitude as an interaction with date, as
predictors of breeding status. We used the lowest
Akaike information criterion (AIC) value (with a
difference >2) to select the best-supported model
(Burnham and Anderson 2002).

Hierarchical model.—The hierarchical modeling
approach allowed us to relate the probability of
an individual having a given breeding status,
conditional on its song rate, to the probability of
that individual having a given song rate, condi-
tional on its breeding status. A popular
approach to hierarchical model composition is to
break down the process into multiple stages or
component models, which make up the full

model (Berliner 1996, Wikle 2003). We assembled
a hierarchical model consisting of two compo-
nents. The first component represented how
temporal covariates (date and latitude, which
may affect timing of breeding) influence the mar-
ginal probability of observing a bird in each
breeding status:

ComponentA. PðBjD; LÞ
where B is breeding status, D is date, and L is lat-
itude. The second component represented the
conditional probability of a singing rate given
the breeding status and time of day:

Component B. PðSjB;TÞ
where S is singing rate, and T is time. We assem-
bled the two components to create a hierarchical
model structured to determine the probability of
each breeding status given the song rate, date,
latitude, and time of day.

PðBjS;D; L;TÞ / PðBjD; LÞ
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

Component A

PðSjB;TÞ
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

Component B

(1)

where / means proportional to, with the con-
straint that the sum of the left-hand side proba-
bilities for each breeding status must sum to 1
(see Appendix S2 for details regarding the Eq. 1
derivation). Eq. 1 describes all covariate relation-
ships that we considered, but final models did
not necessarily include all covariates. The breed-
ing status variable in our model is known and
observable, unlike state-space models (Patterson
et al. 2008); hence, we were able to conduct

Table 1. Breeding status classification descriptions and observational cues.

Classification Description Behavioral evidence

Single Unpaired male defending a breeding territory No interactions with a female detected on that day
and during previous visits

Paired Immediately after a female settled on
a male's territory, no known nest

First observation of a female present on a male
OSFL's territory, but nest not located

Nest building: one or both adults seen building a nest Either or both adults seen carrying nesting material
Incubating: 15-d period pre-hatching when
female spends most of her time sitting on
eggs in the nest (Altman and Sallabanks 2012)

Female directly observed sitting on nest,
male observed feeding a female on the
nest or when nestlings were observed during a
later visit (backdated incubation period based on
hatch date)

Feeding
young

One or more eggs have hatched, and
nestlings are present

A parent observed holding/carrying insect and/or
feeding an insect to nestlings, or direct
observations of nestlings

Note: OSFL, Olive-sided Flycatcher.
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model selection on each component separately.
This avoided the difficulty in model selection
common with state-space models (i.e., where
AIC is not properly defined and deviance infor-
mation criterion, typically used with the Baye-
sian model selection, is problematic; Hooten and
Hobbs 2015).

We first conducted model selection for compo-
nent A, using the lowest AIC value within 2 to
select the top model. For this component, we
compared three a priori multinomial logistic
regression (MLR) models relating the marginal
probability of each breeding status to date and
latitude (Appendix S1: Table S2).

For component B, we used a generalized linear
model (GLM) for song rate, with time and breed-
ing status as predictor variables. We considered
12 a priori models, using either breeding status
as a single covariate or both breeding status and
time. For both options, we tested a Poisson, a
zero-inflated Poisson, a negative binomial, and a
zero-inflated negative binomial song rate distri-
bution (Appendix S1: Table S3). For component
B, model sensitivity for the three predicted
classes was used to select the top model, instead
of AIC, with the purpose of maximizing model
ability to predict individual breeding statuses
from song rate.

Normal approximations of the parameter esti-
mates and their standard error values from the
top-ranked MLR (component A) and GLM (com-
ponent B) were used as priors for the hyperpa-
rameters of model components. A common
practice is to use so-called non-informative pri-
ors, but there are known issues with whether
truly non-informative priors exist (Northrup and
Gerber 2018; S. R. Lele, unpublished manuscript).
We chose to use informative priors in an empiri-
cal Bayes framework as is suggested by Hamil-
ton (1986) and Harris (1989) in the context of
prediction.

Cumulatively, selected models for components
A and B comprised the top hierarchical model
used to predict breeding status class probability
densities. These calibration distributions (i.e.,
posterior distributions) were generated using the
Markov chain Monte Carlo methods from the
package rjags in R (Plummer et al. 2016). We
generated five Markov chains, discarding the
first 1000 values as the burn-in, followed by
10,000 iterations. We used the Gelman-Rubin

diagnostic to test for convergence of the chains to
a posterior distribution (Spiegelhalter et al. 1995,
Brooks and Gelman 1998).
Classification tree.—The classification tree

model (Brieman et al. 1984) was built using R
package rpart (Therneau et al. 2018), using the
Gini index as the impurity index (Wu et al.
2008). A set of classification trees were built to
include a range of sizes, from unpruned (i.e., the
tree with the highest number of branches, cre-
ated using the default complexity parameter
value of 0.01) to fully pruned (i.e., the tree with
the smallest number of branches). We conducted
model selection by choosing the classification
tree that predicted with the highest mean sensi-
tivity after K-fold cross-validation (i.e., leave-
one-group-out, process described in more detail
below). This model selection process is the best
when the research objective behind the genera-
tion of classification trees is prediction (De’Ath
and Fabricius 2000).

Model evaluation
Breeding status predictions were made using

leave-one-group-out K-fold cross-validation,
using one individual OSFL as the group-out.
Specifically, all observations from one individual
OSFL were removed from the dataset, leaving a
training set with observations from 27 males,
which was used to obtain predictive distribu-
tions. The model selection process was not
repeated for each validation fold. Breeding status
predictions were then made based on observa-
tions from the remaining 27 OSFL, and the pro-
cess was repeated for each individual OSFL,
resulting in a 28-fold cross-validation for each
model type. The output from each model was a
probability mass function for each sampling
time, describing the probability of the individual
having each of the three breeding statuses. We
then used the breeding status with the highest
probability as the predicted status.
We used the following performance statistics

to compare the predictive ability from the top
model in each model type: sensitivity (i.e., true-
positive rate for each breeding status class),
mean sensitivity (mean taken across the three
breeding status classes), specificity (i.e., false-
positive rate for each breeding status class), and
mean specificity (mean taken across all three
breeding status classes; see Appendix S1:
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Table S4 for equations describing each prediction
evaluation term). We used specificity and sensi-
tivity as predictive measures because both are
prevalence-independent test characteristics,
meaning that their values do not depend on the
prevalence of a value in the dataset. We tested
whether the predicted breeding status prevalence
was significantly different from the prevalence of
observed breeding statuses by performing two
tests of marginal homogeneity: a Bhapkar test for
overall results (Bhapkar 1966) and the McNemar
tests for each of the three predicted classes
(McNemar 1947).

Sample prevalence
The dataset used in this study had an unequal

prevalence of each breeding status to train the
models; that is, ~70% of song rates were associ-
ated with paired observations and ~15% for both
single and feeding young. This imbalance in the
dataset occurred because the period between
male arrival and pairing is brief relative to the
amount of time required for nest building and
incubating. Also, only a few song counts (n = 23)
were collected from males in the feeding young
stage because only 46% of the nests reached that
status during our sampling period.

The challenge of unequal class representation
is common in classification models, where pre-
dicting the class with the lowest representation is
often of higher importance and interest (Ali et al.
2015). However, model algorithms often maxi-
mize accuracy (Ali et al. 2015) and are thus
biased toward predicting the most prevalent
class. A useful BSSR model should not be biased
toward the paired status because the different
breeding statuses provide important demo-
graphic information. Thus, we used the preva-
lence-independent metrics sensitivity and
specificity for the three breeding statuses, indi-
vidually and combined (i.e., mean sensitivity), to
distinguish predictive performance for the differ-
ent models.

RESULTS

We collected 20 � 7.7 (mean � SD; n = 545)
five-minute song counts per territorial male,
from which we calculated 160 mean 5-min song
rates. The breeding statuses associated with these
song rates were comprised of 26 (16.3%)

instances where males were classified as single,
111 (69.4%) as paired, and 23 (14.4%) as feeding
young. The mean date of first detecting breeding
males was 6 June (�4.5 d; n = 28). Mean pairing
date was 9 June (�6.6; n = 21), start of incubation
was 18 June (�7.3 d; n = 20), and hatching was 2
July (SD = �7.6 d; n = 17).

Multinomial logistic regression
The top multinomial model included song rate

and date as independent variables (Appendix S1:
Table S1). Song rate had a significant negative
effect on the probability of being paired vs. single
(log odds ratio = 0.94, P < 0.001). Date had a sig-
nificant positive effect on the probability of being
paired (log odds ratio = 1.07, P = 0.045) or feed-
ing young (log odds ratio = 1.74, P < 0.001) vs.
single. OSFLs are more likely to be paired or
feeding young than single later in the breeding
season.

Hierarchical model
The top-ranked full model included time, date,

and song rate (see Appendix S3 for BUGS-lan-
guage script file for this model). For component
A, breeding status was best modeled by date
(Appendix S1: Table S2), where the probability of
(1) being single is highest for early dates, (2)
being paired is highest in the middle of the date
range, and (3) feeding young is highest for later
dates. The component B model that resulted in
the highest mean sensitivity included both breed-
ing status and time as predictors of song rate,
using a Poisson distribution of mean-rounded
song rate (see Appendix S1: Table S3 for contrast-
ing AIC values).

Classification tree
The top classification tree model from the

model selection (i.e., the one that best predicted
all three breeding statuses) had four splits and
included all predictor variables (ranked impor-
tance: date, song rate, time and latitude;
Appendix S1: Fig. S1).

Model performance comparison
Based on the highest mean sensitivity, the top

model type was the hierarchical model (69%),
followed by the multinomial logistic regression
and classification tree with mean sensitivity val-
ues of 54% and 50%, respectively (Table 2).

 ❖ www.esajournals.org 8 January 2020 ❖ Volume 11(1) ❖ Article e03005

UPHAM-MILLS ET AL.



All three models overpredicted some breeding
statuses, indicated by their specificity values
(Table 2). The multinomial logistic regression
and classification tree both overpredicted paired
at a high rate (specificity values of 0.37 and 0.29,
respectively) compared to the hierarchical model
(0.82 specificity). The marginal frequencies (i.e.,
predicted breeding status prevalence) of the
multinomial logistic model and the classification
tree were similar (<10% predictions of single and
feeding young and >80% for paired), while those
of the hierarchical model predicted a lower
prevalence of paired individuals (Fig. 3), with
the true prevalence lying between these two
extremes. Test results for marginal homogeneity
between the predicted and the observed breed-
ing statuses were similar for all three models,
with the prevalence of single and paired differing
significantly from true prevalence (Appendix S1:
Table S4). The prevalence of feeding young did
not differ significantly between predicted and
true breeding statuses for the classification tree
and multinomial logistic regression, but the pre-
dicted value differed significantly from the true
breeding status for the hierarchical model.

DISCUSSION

The top modeling approach in our comparison
was the hierarchical model (hereafter referred to
as the BSSR model), which predicted all three
breeding statuses correctly at a higher rate (i.e.,
mean sensitivity) than the regression and CART
models and was less prone to overpredict any
given breeding status (i.e., mean specificity). The
challenge with measuring breeding status indi-
rectly is the statistical calibration of the underly-
ing behavioral mechanism when breeding status
causes changes in singing rate. The hierarchical
structure of the BSSR model allowed us to
address this challenge while also accounting for

daily variation in singing rate through the hierar-
chical series of conditional probability state-
ments. This study provides an example of how
to create a predictive model through statistical
calibration for an indirect measurement of a bio-
logical state. Depending on the nature and scale
of the research question or monitoring program,
users could adapt the model to improve its pre-
dictive ability (i.e., sensitivity). Our work
answers the call for more fundamental studies to
better understand and represent the underlying
mechanisms in indirect measurements in ecology
(Lindenmayer and Likens 2011, Stephens et al.
2015).
The pattern we observed in how singing rate

changes with breeding status in the OSFL is simi-
lar to patterns observed by Wright (1997) in an

Table 2. Performance evaluation metrics of the three model types.

Model

Sensitivity Specificity

Single Paired Feeding young Mean Single Paired Feeding young Mean

MR 0.19 0.92 0.52 0.54 0.96 0.37 0.97 0.77
HM 0.69 0.50 0.87 0.69 0.80 0.82 0.78 0.80
CT 0.08 0.89 0.52 0.5 0.93 0.29 0.98 0.73

Notes: MR, multinomial logistic regression; HM, hierarchical model; CT, classification tree. The highest values for each met-
ric and breeding status are highlighted in bold.

Fig. 3. Prevalence of predicted breeding statuses for
the three model types (MR, multinomial logistic
regression; HM, hierarchical model; and CT, classifica-
tion tree) and the true breeding statuses.
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OSFL population in Alaska. In both study areas,
in different years, unpaired males sang at the
highest rates; males who had paired and were
engaged in initial breeding activities (i.e., nest
building and incubating) sang less; and males
feeding young rarely sang, and when they did,
they sang few songs. Olive-sided Flycatchers in
both studies also sang most around sunrise and
much less as time since sunrise increased. This
suggests that the song rate component of the
hierarchical BSSR model can be used in different
study areas for OSFL research and that time of
day is an important song rate predictor. The
other component of the hierarchical BSSR model,
however, models the probability of each breed-
ing status given the date or general species
breeding timing (i.e., phenology) for that latitude
and year. Although latitude was tested as a pre-
dictor in the breeding status component model,
it was not significant in model selection. This
result suggests limited regional variation in
breeding phenology, contrary to our expectation
that phenology would shift in our more northern
study area. Environmental conditions during
migration and at the breeding grounds can
change breeding timing for a species among
years, especially with the warming effects of cli-
mate change (Visser et al. 2004). Mean dates of
OSFL pairing and of feeding young in 2016 in
northern Alberta and the Northwest Territories
were comparable to those reported from other
OSFL populations, and phenology tended to not
vary beyond a week between 1995 and 1996 from
one study (Wright 1997). Although there may
not be extreme variation in phenology between
breeding regions or among years in OSFL, it may
be important to verify breeding phenology for
the region and year of interest for future applica-
tions of the model.

The BSSR model we produced is a simple ver-
sion that can be used as a baseline on which to
add parameters to improve predictive ability
and/or apply to other vocal species. The singing
behavior of many songbird species differs signifi-
cantly between individuals with different breed-
ing statuses (Rades€ater et al. 1987, Gibbs and
Wenny 1993, Stacier et al. 1996, Dussourd and
Ritchison 2003). The modeling framework used
in this study can likely be applied to other song-
bird species, but species-specific model calibra-
tions would be required to select the most

appropriate song metric and covariates. For
example, instead of using song rate, length of
song bout, time of first song, within-day varia-
tion in singing rates, song count conditional on
at least one song, or a combination of these or
other song metrics might provide better predic-
tive ability. The BSSR model was constrained to
using song rates recorded between OSFL spring
arrival and late July when breeding OSFLs are
feeding young. However, if the research objective
was to predict breeding status after pairing (i.e.,
incubating eggs, feeding young, and fledging),
the use of call rates instead of song rates may be
a more precise indicator of nest status because
calls represent activity at the nest (J. Hagelin and
J. Wright, unpublished data). A wide range of
unmeasured variables known to affect song rate
in passerines may account for the 30–50% of
unexplained variation in the BSSR model, such
as density of conspecifics (Lampe and Espmark
1987), temperature (Gottlander 1987), within-in-
dividual variation (Rades€ater et al. 1987, Robbins
et al. 2009), and extra-pair copulation
(Hasselquist et al. 1996). However, these factors
require further investigation to assess their rela-
tive impact on BSSR predictive model
performance.
The sensitivity values (i.e., true-positive rates)

for the BSSR model were 69%, 50%, and 87% to
predict single, paired, and feeding young, respec-
tively. To our knowledge, no other studies have
used calibration methods to predict breeding sta-
tus from song rate, so we are unable to compare
predictive ability with that from other models.
However, we can compare the BSSR model predic-
tive ability to that of other breeding bird reproduc-
tive indices. Vickery et al. (1992) designed a
method to measure reproductive success, repre-
senting five statuses ranging from unpaired to
fledged young, based on breeding behaviors. This
index provided a reasonable measure of reproduc-
tive success for grassland songbirds compared to
more intensive nest monitoring at the same study
area (27% predicted fledged vs. 42% truly fledged;
Vickery et al. 1992). When adapted to integrate
nest monitoring with breeding behaviors for three
forest breeding birds, the index provided correct
breeding status predictions for 61–79% of the visits
(Christoferson and Morrison 2001). Our hierarchi-
cal model had a similar predictive success, without
the need for extensive nest searching and
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behavioral observations, although our model is
constrained to predict three breeding classes.

Monitoring song rate over a larger portion of
the breeding season would improve certainty in
predictions for individual birds. However, collec-
tion of song rate data by human observers on a
fine temporal scale (i.e., daily vs. once per week)
would take a large amount of time and likely be
infeasible. A promising alternative method for col-
lecting a larger amount of song rate data is using
autonomous recording units (ARUs), which are
increasing in popularity for bird research
(Pankratz et al. 2017, Shonfield and Bayne 2017).
There are three important advantages of using this
technology to predict breeding status from song
rate: (1) Daily acoustic surveys of a target location
can be conducted for the entire breeding season;
(2) large quantities of acoustic data can be pro-
cessed using automatic recognition software; and
(3) acoustic data can be permanently stored and
thus may be reanalyzed later. The advantage con-
nected to future reanalysis reflects the fact that
automatic recognition software, used to detect spe-
cies of interest efficiently, is still improving and
future processing may improve detection rates on
recordings. This technology is being applied over
large spatial extents, and acoustic data are becom-
ing readily available for many regions. For exam-
ple, the Alberta Biodiversity Monitoring Institute
(www.abmi.ca) has been monitoring breeding
birds in Alberta since 2003 and breeding season-
long recordings are available from across the pro-
vince (Alberta Biodiversity Monitoring Institute
2011). Thus, large-scale demographic analyses
based on temporal variation in song rates could be
conducted for our focal species if the hierarchical
model can be adapted for ARU-based song rates.
Autonomous recording unit data have some chal-
lenges, however, primarily associated with imper-
fect detection probabilities related to bird
movement away from the detection limit of the
ARU. This would have to be accounted for in the
modeling approach. The hierarchical model pro-
vides the framework to include such uncertainty
and is an area of active investigation (E. Upham-
Mills, et al., unpublished manuscript).

This study was the first attempt to predict a
male songbird’s breeding status using his singing
rate, and our results provide a new method to
monitor breeding status in a migratory songbird.
We highlighted the importance of considering

the calibration problem in ecological prediction
modeling and demonstrated the advantage of
using hierarchical modeling over conventional
predictive model types (i.e., multinomial logistic
regression and classification tree) to improve the
sensitivity of predicting target classes. Future
studies should aim at testing a similar approach
to predict breeding status from song rates for
other songbird species. We demonstrated that
monitoring birdsong to infer songbird breeding
status shows promise and warrants further
investigation, especially if the model can be fur-
ther developed for application with noninvasive
ARU monitoring.
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